Kabaret Documentation
Release 2.0

Damien Dee Coureau

Mar 29, 2021

Introduction

1 Main Features 3
2 Status 5
2.1 Whyand How e e 5
2.2 Quick Start e e e e 7
2.3 USAZE .« v v e e e e e e e e e e e 30
2.4 GUIU . . . o e e e e e e 31
2.5 Installation L e e e e e e e e e 31
2.6 Flow Reference Guide e e e 33
2.7 AppReference Guide e e e e 42
2.8 Featured EXtensions e e e e e e 45
29 FAQ&FunFacts e e e e 46
2,10 Credits o e e e 47
3 Indices 49
Python Module Index 51
Index 53

Kabaret Documentation, Release 2.0

Kabaret is a Free and Open Source VFX/Animation Studio Framework.

It is made for TDs and Scripters involved in Production Tracking, Asset Management, Workflow and Pipelines used
by Production Managers and CG Artists.

Introduction 1

Kabaret Documentation, Release 2.0

2 Introduction

CHAPTER 1

Main Features

Fast and Easy Project modeling.

No decision made for you, your pipe = your rules !

Based on 20+ years of experience in the field.

Generative end-user GUI: zero code needed.

Modular and Extendable pure-python architecture.

Python 2.7+ and 3.6+ compatible.

Embeddable in PyQt5, PyQt4 and PySide based applications.
Tested under Windows and Linux.

There’s an example project so you can start experimenting in less than 5 minutes !

credits.html

Kabaret Documentation, Release 2.0

4 Chapter 1. Main Features

CHAPTER 2

Status

Kabaret has been used in productions for over two years by a couple of studios, with only minor changes made in the
second year. This has been the signal that it was ready to be shared with the world.

We were wrong :p

Being bug-free and optimally tweaked did not shade the fact that the original specs were containing features that had
never been used during those two years. So we decided to refactor in order to drop the non-vital parts that were adding
unnecessary complexity (namely: the station/client architecture, the filesystem database, some Flow features, most
Actors. . .).

This refactoring is done, but we lost compatibility with previous projects and unit tests. One could say we also lost the
confidence gained with the two years in productions. Until unit test are back, there is no arguing against this.

tl;dr: Have fun with kabaret, but do not use it in production yet.

2.1 Why and How

2.1.1 Why another Pipeline software ?

There are many existing solutions, both commercial/closed and free/open, to handle the task of “CG Project Manage-
ment”. Notable and recent examples include CGWire, Kurtis, shotgun. ..

Almost all of them fall in two categories: Meta-Data management or Dataflow Modeling.

The Meta-Data Management tools are often Production Team oriented and subtitled as “Better than google docs™”.
They manage a more or less flexible “entity” system and their dependencies: assets info, shot list, statuses, frame
ranges, etc.

As vital as this is to complete a CG project successfully, it does not give any help in the practical matter: the technical
side of an artistic cooperative work.

The Dataflow Modeling tools are often Talent Team oriented and captioned as “Automate everything !©”. There is a
strong culture of dataflow in the CG world because many of our Digital Content Creation tool use them under the hood,

https://www.cg-wire.com/
http://texels.com/
https://www.shotgunsoftware.com/

Kabaret Documentation, Release 2.0

with great success. Automating non-artistic tasks involve things like dependencies, parameters and process execution.
It sounds pretty much like a dataflow.

As efficient as they are to manage 3D data or image manipulations, dataflows do come with restrictions. A major one
being that the graph needs to be “acyclic”. This becomes a real issue when you try to represent the highly iterative
day-to-day tasks of an artistic cooperative work.

After years of using and implementing different flavors and mixes of both of those, it is now obvious that the solution
is elsewhere.

Hence the need for another approach.

2.1.2 How is Kabaret different ?

Interestingly, the CG world is not flooded by BPM and Workflow concepts, despite the fact that the BPM definition
pretty much describes what we are looking for:

“Business Process Management (BPM) is a discipline involving any combination of modeling, automa-
tion, execution, control, measurement and optimization of business activity flows, in support of enterprise
goals, spanning systems, employees, customers and partners within and beyond the enterprise bound-
aries.”

The reason might probably be that the “Artistic” world is not keen on being treated as an “Industrial Business” or an
“Orchestrated and repeatable pattern of business activity”. It is nevertheless what project management aims to bring
to the table.

Workflow does a pretty good job as modeling the “highly iterative day-to-day tasks of an artistic cooperative work”
and is a better fit than Dataflow. On the other side it does not deal down to data processing and does not replace
the Dataflow.

Representing both in a single graph is the idea that led to Kabaret.
But there’s more !
We also wanted to provide:

¢ A framework, not a Solution

Every need is different and every project should not deal with decisions made for another project or studio.
Any choice you did not make yourself is not the better one. Kabaret gives you an abstract set of tools that
you can use as you want. The balance of Workflow / Dataflow you need is up to you.

* Rapid Prototyping, Fast Development, Live Update, Schema-less

This is the only path to happy end-users. Having 100 Artists working on the project for six months should
not mean that the workflow can’t evolve, and it should not require downtime or migrations to do so.

¢ The end of GUI development

It can cost more than the implementation of the actual pipeline features. We need automatic default GUI,
with configurable behavior. Of course you can extend or even replace the default, but you’ll get a pretty
good GUI out of the box.

¢ Problem isolation, Reusability of solutions

Two projects are not the same, but they surely share a lot: Naming conventions, version control, long-
running tasks dispatching, etc. Once something is dealt with, it is available for every other project. Once
a solution is in use, updating it updates all projects.

¢ Modular and Extendable

There will always be more. Let’s deal with that later by adding blocks :D

6 Chapter 2. Status

https://en.wikipedia.org/wiki/Business_process_management
https://en.wikipedia.org/wiki/Workflow
https://bpm.com/what-is-bpm

Kabaret Documentation, Release 2.0

Doesn’t it whet your appetite ? :D

2.1.3 What Kabaret is not ?

Kabaret is not a Pipeline software, nor an exhaustive Pipeline solution. It is a Framework and it delivers only generic
features that may or may not be used by someone to build his very own solution.

That being said, there are a number of generic features that are not available in Kabaret. The reason is that we want to
keep it to the bare minimum so that code quality prevails over feature quantity. It does not mean that we won’t provide
those, on the contrary. We focused on delivering an extensible architecture so that whatever would be the scope of a
missing feature, one can implement it without modifying Kabaret’s code, and package the result to share it with the
community.

Here are some examples of what we will provide as ‘extensions’ packages:
¢ A Script view, with python syntax highlighting and code completion.
¢ A collection of Flow Objects to handle planning information along with a Gantt view to visualize and edit them.
* Other collections of Flow Objects like BPM Workflow, Shotgun sync, mail automation, etc.
* An Actor to manage subprocess spawned by the flow.
e An Actor to manage users, teams and their preferences.
* Some Actors as alternative key-value stores.

You can look for extensions on the Python Package Index or discuss with the community on the Kabaret Studio discord
channel.

We encourage you to share your extensions there too :)

2.2 Quick Start

2.2.1 Demo & Showcase

Goal

This tutorial will let you run and play with a Kabaret standalone application.

Prerequisites

For this tutorial we assume you have installed kabaret in either options described here.

Kabaret uses various functionalities of redis and we will use a local redis-server to continue. You can download one
from this page (windows users can download here) and start a server with the default configuration. We will assume it
is available at localhost on port 6379.

Preparation

Kabaret is not an application but a framework and it is up to the user to build his very own tools. The convention is to
package this code into a “studio” python package, as it will contain everything your studio will need. Before learning
how to do this in next tutorials, we will have a look at what kabaret looks like for the end user.

In order to do so, we will run the ‘dev_studio’ that our developers use to test and showcase their functionalities. This
python package installs itself when you install kabaret so you should already be able to import both packages:

2.2. Quick Start 7

https://pypi.org/search/?q=kabaret
https://discord.gg/NmJDHsN
../install.html
https://redis.io
https://redis.io/download
https://github.com/MicrosoftArchive/redis/releases

Kabaret Documentation, Release 2.0

import kabaret
import dev_studio

Now run python with the following command line options:

python -m dev_studio.gui --cluster KABARET_DEMO --session KabaretDemo

Note: If you need to connect to a remote redis store, you can use —db, —host and —password. You can also use -h at
the end of the command line to list all available options.

You should see a Kabaret window like this:

4 KabaretDemo[KABARET_DEMO]

Fig. 1: Your very first encounter with Kabaret GUI \o/

Let’s play !

Bravo, you have just run your first kabaret application \o/

This window is Kabaret’s default standalone with the default look and style, showing the default view: a project
explorer. There is not much to see yet so we will create a project to browse.

Locate the button on the right of the “Projects” field. It contains the actions you can perform on the list of available
projects. Left click it, and select “Create Project”

A dialog will appear, with a field for the Project Name and another one for the Project Type. You can leave default
values and click the “Create Project” button.

8 Chapter 2. Status

Kabaret Documentation, Release 2.0

Toggle Archived Praojects

Togale Project Type

'@ /Home fprojects/create_project

2.2. Quick Start 9

Kabaret Documentation, Release 2.0

You will now see the “MyProject” entry in the Projects table. Double click on it to open it and have fun :p
Take some time to familiarize yourself with navigation:
* Click the [+] sign on the left of a label, or double click when the label is highlighted to expand it.
* Double click on a label to enter it.

e Double click with the Control key pressed to open in another view (you can rearrange view using
dragé&drop)

» Use the navigation button at the top-left of the view (use the Home button to go back to the project list)
» Use the navigation address at the top of the view (left or right click on different sections)
* Resize stuff with the middle mouse button.
You should discover basic possibilities of kabaret GUI:
* Groups
¢ Action Menus, Actions Buttons, Action Dialogs
* Maps (tables/list)
e Parameter fields with various editors (text, boolean, date, etc.)
e Summaries
e Drag’n’drop
Everything you see here has been defined by the dev_studio.flow.demo_project module.

This project is just a dummy non-functional mockup, but you can challenge yourself into creating a Film and some
Shots. Maybe even an asset that you could drag’n’drop into a shot casting. ..

Note: It you accidentally closed all views, you can right click anywhere and select one of the available views.

Conclusion

We’ve seen just the tip of the iceberg here, but it hopefully made you want to discover more.

If you’re python fluent, you can watch the content of the dev_studio/flow/demo_project.py file (start your journey
at the end with the DemoProject class definition). You may also want to create a second project with the type
‘dev_studio.flow.unittest_project.UnittestProject’, it is full of interesting inline comments about the kabaret.flow us-
age. ..

Or just browse to the next tutorials where we will setup your own studio and create a simple project ! :)

2.2.2 Create My Studio

Goal

The Kabaret framework covers many aspects of a TD needs. The most basic one might be to present a GUI to the
Artists with some tools to execute.

We are going to build such a GUI with kabaret.

10 Chapter 2. Status

Kabaret Documentation, Release 2.0

)
@
9
E
v
i
=
+

I+ ANZ o

B

Fig. 2: Here is a sample of what you can find in the UnittestProject

Prerequisites

For this tutorial we assume you have installed kabaret in either options described here, and have a local redis-server as
described in the previous tutorial prerequisites.

Preparation

Choose a folder where you want to put your code. This location will be referred to as <BASEDIR>.

We will need to import python code from there, so you should have it in your PYTHONPATH (or use any other trick
you flavor. . .).

Let'sdoit!

We are going to create a python package containing all the code using kabaret. There is a convention to name such
package as <xxx>_studio since they tend to contain all the proprietary code you need to run a studio. So let’s name
ours ‘my_studio’.

Create the <BASEDIR>/my_studio folder and add a __initr__.py file inside it.
Now we are going to create a module that builds and shows our GUI. Let’s have it as my_studio.gui.
Create the <BASEDIR>/my_studio/gui.py file, and open it in your favorite text editor.

Kabaret applications are managed as ‘sessions’. All sessions in the local network communicate with each other so that
you can build a truly collaborative application for your users. But you may need to handle more than one studio in a
single network so in order to restrict those communications, sessions are organized in clusters.

2.2. Quick Start 11

../install.html
./demo_show_case.html#prerequisites

Kabaret Documentation, Release 2.0

Another purpose of the session is to provide an API to kabaret features and kabaret extensions features. This API is
composed by collections of commands. A session contains a configurable list of Acfors, and each actor defines a single
collection of commands.

There are a couple of session types available in the framework. One is a Standalone GUI Session, and we are going to
use it.

In the gui.py file, import the kabaret.app.ui.gui module and subclass the KabaretStandaloneGUISession it contains:

from kabaret.app.ui import gui

class MyStudioGUISession (gui.KabaretStandaloneGUISession) :

pass

Now let’s have our gui module act as a main by adding the classic __name__ test and create our session. Add those
lines at the end of gui.py:

if name_ == '_ _main__ ':
session = MyStudioGUISession (session_name="MyStudio™)
session.cmds.Cluster.connect (
host="'localhost',
port='6379",
cluster_name='TUTORIALS',
db_index="1"
)

session.start ()
session.close ()

Here we create our session, giving it a name which will help identify it in the cluster and in logs. We use the ‘connect’
command of the ‘Cluster’ Actor to configure the communication with other sessions. We start the session and close it
after the last window of the GUI get destroyed.

You can now launch you very own application using python’s -m flag:

python -m my_studio.gui

Windows users may want to create a .bat file containing something like:

set PYTHONPATH=%PYTHONPATH%; <BASEDIR>
C:\python27\python.exe -m my_studio.gui
pause

You should see the classic default Kabaret window, with a project explorer view:

And in the shell you should be able to see:

kabaret - INFO: Registering 'Cluster' Actor from kabaret.app.actors.cluster
kabaret - INFO: Registering 'Flow' Actor from kabaret.app.actors.flow

kabaret - INFO: Connecting to localhost port:'6379', index:'l'

kabaret - INFO: Connected to Cluster 'TUTORIALS'

kabaret - INFO: Configuring Project Registry

kabaret - INFO: Subcribing to flow_touched messages.

kabaret - INFO: [Broadcast Message] u'Cluster joined by Dee:MyStudio-8872@Dee-PC'

This may not seem like much but less than 10 python lines you have built a highly configurable and extensible applica-
tion that can communicate with everyone in the local network. If you click on the “*’ button on the top right corner of

12 Chapter 2. Status

Kabaret Documentation, Release 2.0

4 KabaretDemo[KABARET_DEMO]

Fig. 3: Your very own GUI \o/

2.2. Quick Start 13

Kabaret Documentation, Release 2.0

the default view, you will see that this application has a classic multi-view interface where you can drag’n’drop views
to move and/or stack them.

Optional fun

Before adding actual useful things into this GUI, let’s see how we can customize it, just for fun :)

In gui.py, add those lines just before the __name__ test:

from kabaret.app.ui.gui.styles import Style

class NoStyle (Style):
def apply(self, widget):

pass

NoStyle ('"NoStyle')

We’ve created and applied a custom style to the gui. This style does nothing in its apply() method so if you launch
your GUI you will now have something looking like the default for your current Operating System theme.

Now let’s do something more interesting by subclassing the default style and rebranding it to a bluish identity. Add
those lines just before the __name__ test:

from gtpy import QtGui
from kabaret.app.ui.gui.styles import dark

class MyStyle (dark.DarkStyle) :

def apply(self, widget):
super (MyStyle, self).apply(widget)

palette = widget.palette()

palette.setColor (palette.Window, QtGui.QColor ('#556"))
palette.setColor (palette.Base, QtGui.QColor ('#335"))
palette.setColor (palette.Highlight, QtGui.QColor ('#002"'))
palette.setColor (palette.HighlightedText, QtGui.QColor ('#88D"))
widget.setPalette (palette)

MyStyle ()

We’ve created a new style based on the default one and we have overridden a few color settings to have a nice (?!)
blue ambience.

There’s way more you can do with the framework like using stylesheets, replacing or adding icons, etc. But the default
theme and icons have been carefully crafted and selected for a nice CG Artist experience.

Conclusion

The philosophy of Kabaret is to provide high-level features but also to reduce the boilerplate to the strict minimum
without closing the door to customization and personalization.

14 Chapter 2. Status

Kabaret Documentation, Release 2.0

Now that you have the environment set up (1 folder and 2 files !) you can build a collaborative application with a
classic multi-view GUIL

In the next chapter we will see how convenient and efficient this can be for your workflow/pipeline users.

2.2.3 My First Project

Goal
The Kabaret framework covers many aspects of a TD needs. The most valuable one is probably to build a pipeline
and/or workflow for the artists.

Without getting too much in depth into this topic, we are going to give you a hit of what if feels like to build something
with kaberet.flow, the package responsible for making this task a pleasure.

Prerequisites

For this tutorial we assume that you have successfully walked through the previous one and that you can run a Kabaret
standalone session.

Preparation

Get comfy, we need to talk before the fun.

Kabaret’s solution to develop pipelines and workflows is named Flow and is available in the kabaret.flow package.
The reasons why kabaret.flow is outstanding are beyond the scope of this tutorial, but you should know that one of
them is that it’s really simple to understand and to use.

The idea is to define a schema of your project using objects and relations between them. That’s the whole concept.
Nothing more. Anything done with the flow is just some objects related to each other.

kabaret.flow provides a list of different relations and a few specialized object types. You will extend those objects and
use the existing relations to create the schema of your project. This is often related to as project “modeling”.

Here are the kinds of objects at your disposal:
* Objects are the base for everything.
¢ Values are Objects that hold data.
* Maps are Objects containing a dynamic list of Objects.
* Actions are Objects that execute code.
The most often used relations are:
* Parent: the related Object contains this Object
* Child: the related Object is inside this Object
e Param: the related Object is a Value

We are going to use those Objects and Relations to model a really basic project consisting of just a list of shots. let’s
create this module in our studio:

<BASEDIR>/my_studio/my_first_flow.py

2.2. Quick Start 15

./create_my_studio.html

Kabaret Documentation, Release 2.0

We will write all this tutorial code in this file. The complete code can be seen here.

Note: In real life situation we would probably define our project in a package instead of a module, and it would be a
good choice to have all the projects in one package like: my_studio.flows.my_first_flow

Let’s play !
Now grab your favorite mechanical keyboard, we’re diving in !
Foreplay

A project is defined by a root Object that contains all other Objects. Our project will consist of a list of Shots and a
few settings values. Let’s add a basic structure for that:

from kabaret import flow

class Shots (flow.Map) :
pass

class ProjectSettings (flow.Object):
pass

class Project (flow.Object) :

shots = flow.Child (Shots)
settings = flow.Child(ProjectSettings)

Flow code is easily read from bottom to top. Let’s walk through this code in this order.

The Project class is our project definition. It’s a flow.Object extended with two Child relations: the shots and the
settings. The Child relation means that Project “contains” shots and settings.

The ProjectSettings class is a bare flow.Ojbect. We will use it to group settings values.
The Shots class is a flow.Map. A Map can store several objects. We will use it to store our shots.

Let’s see how it looks in your application. Start it, create a new project with the name “MyFirstProject” and the type
“my_studio.my_first_flow.Project”. After entering the project you should see something like this:

Ok so if you’re not impressed by the GUI built with 8 lines of code, let’s see two sugar features of the flow package
now. Don’t close your application, but go on and swap order of shots and settings in the Project class and save the file:

class Project (flow.Object) :

settings = flow.Child(ProjectSettings)
shots = flow.Child (Shots)

Now in the “Option” menu at the top-left of your flow view, select “Activate DEV Tools”. A new “[DEV]” menu
should appear. In this menu select “Reload Project Definitions”. And voila !

The order you define your object relations is reflected in the GUIL. And you don’t need to restart your application to
see your changes. We’re going to use that a lot !

16 Chapter 2. Status

Kabaret Documentation, Release 2.0

MyFirstProject

Options

OQ A& /VyFirstProject

Fig. 4: Hmm... You might not be impressed yet :p

Now let’s keep it nice and swap back those two relations please. . .

Using Values

It’s time to add some values to the ProjectSettings.

All our shots will contain some files, so we’re going to need a place to store them. We will be using a Param relation
to let the user edit this location and a few IntParm for things that would make sense in a real world scenario:

class ProjectSettings (flow.Object):

store = flow.Param('/tmp/PROJECTS")
framerate = flow.IntParam(24)
image_height = flow.IntParam(1080)
image_width = flow.IntParam(1920)

Now click [DEV] -> Reload and open the Settings field.

All fields show the default value defined by our code. If you edit the Store field you will see a blue background until
press enter and the new value is stored. If you edit the frame rate and try to input something else than an integer, a red
background appears in the field: your value was rejected. All those fields accept python expressions so you can enter
3*10 in the Frame Rate field and the result will be stored.

Now run another instance of your application and browse to MyFirstProject/settings. Change a value and see how the
first application reflects the change without any intervention. This works for every instance of your application in the
local network.

And now let’s click the home button and create a project “MySecondProject” with the same type
“my_studio.my_first_flow.Project”. Browse to its Settings and witness how this project uses the default values. You

2.2. Quick Start 17

Kabaret Documentation, Release 2.0

can duplicate the current view by clicking the “*” button on the upper-right corner, and use the new view to show both
projects settings side to side:

Options * + Options

O Q & @& (MyFirstProject/settings OQ & (MySecondProject/settings

Fig. 5: Hmm... Should you be impressed ?

Now is the time to realise something crucial about Kabaret’s Flow: The thing you are modeling is not the project itself
but the schema of your projects. In fact, your projects are instances of your flow. It is a complete different approach
than connecting nodes in Nuke or in Maya where you define a graph that is used as a dataflow. Here we are defining
a graph that generates the graph that will (or may) be used as a dataflow. Each instance of your flow has its own set
of values, but the structure is shared. If you comment the framerate relation in your ProjectSettings class and reload
your Project Definitions (on both views), you will see that neither MyFirstProject not MySecondProject contains a
framerate field anymore. Another nice feature is that if you un-comment this line and reload, both projects will have
their previous value back. And maybe the nicest part is that you did all this without having to worry about how to
store the values, and without enduring some migration process to alter the schema of your data. Welcome to the 21st
Century ! ;)

Defining the flow instead of the actual project is something borrowed from the “Workflow” world. It has many
advantages among which the fact that when you add something, for exemple a batch process between two tasks of a
shot, everything is updated at once: all shots will contain this process without the need to update existing graphs or
trigger some dark-magic synchronisation machinery.

Now let’s forget about MySecondProject and focus on building something more interesting.

Using a Map

We’ve seen how we are defining a structure instead of a concrete project. But all our projects won’t have the exact
same structure. In our case - a simple shot manager, the list of shots will need to be different from project to project.
We can’t just use something like:

class Project (flow.Object) :

shot 001 flow.Child (Shot)
shot002 flow.Child (Shot)
shot003 = flow.Child (Shot)

(continues on next page)

18 Chapter 2. Status

Kabaret Documentation, Release 2.0

(continued from previous page)

shot004 = flow.Child (Shot)
shot005 = flow.Child(Shot)

That’s the reason for the kabaret.flow.Map to exist: It provides a per-instance list of things. Let’s see how by imple-
menting a few methods on our Shots class:

class Shot (flow.Object) :

first = flow.IntParam (1)
last = flow.IntParam(100)

class Shots (flow.Map) :

@classmethod
def mapped_type(cls):
return Shot

def columns (self):
return ['Name', 'Ranges']

def _fill row_cells(self, row, item):
row['Name'] = item.name ()
row['Ranges'] = ' —-> '.format (item.first.get (), item.last.get())

We added the Shot class definition. It’s a simple object with two Params. We also implemented the Shots’ mapped_type
classmethod to return our Shot class. This tells the flow that all objects contained in the Shots map will be Shot objects
(or subclasses of Shot).

We have also overridden the default implementation of the columns() and _fill_row_cells() methods. Both are used to
configure the information displayed in the views. The Shots map will now list the name and the ranges of each shot it
contains.

You can notice how _fill_row_cells() gets the value from the Shot item it receives. We know the ifem argument is a
Shot because we configured the Map for that. The Shot class has a first and a last relation, so every Shot instance has a
first and a last attribute containing the respective Value Object. Every Value in the flow has a ge#() method that returns
the data it holds.

Next step is to add some shots in the Shots map, and we will need user input for that.

Using Actions

Pipeline is not all about metadata, it is about executing code too. Sometimes the code has to be triggered by some
event, sometimes it is up to the user to trigger it. The kabaret.flow.Action Object is meant for this second case.

An Action will show up in the GUI as a button and/or as an entry in a menu. By clicking it, the user tells the action to
show a dialog if needed, and then execute its run() method. Let’s add an Action that creates a Shot in our Shots Map:

class AddShotAction (flow.Action) :

def get_buttons(self):
return ['Create Shot', 'Cancel']

def run(self, button):
if button == 'Cancel':
return
create the shot here

2.2. Quick Start 19

Kabaret Documentation, Release 2.0

You create your own Action by extending the flow.Action class. The get_buttons() method can be implemented to
return the list of buttons available in the Action’s dialog. When the user clicks one of those buttons, the run() method
is called with the name of the clicked button. Our run() implementation checks that the clicked button was not “Cancel”
before doing anything.

In order for this Action to be used by our flow, we need to add it as a relation somewhere. As it will act on the Shots
map, let’s make it a Child there:

class Shots (flow.Map) :

add_shot = flow.Child (AddShotAction)

If you reload your project definitions you will see a new menu button on the right of the Shots label. This menu
contains the “Add Shot” entry. Clicking it will show a dialog with the “Create Shot” and “Cancel” buttons.

Now let’s implement the run() method to actually create a Shot. The flow.Map Object has an add() method accepting
a string as the name of the item to add. We will need to call it with a user input value. This input will be handled by
a Param in the AddShotAction. And, as the Action is a Child of the Shots Map, we will use a Parent relation to access
the Shots from within the AddShotAction:

class AddShotAction (flow.Action) :
The leading _ tells the GUI that this relation is protected
and should not be shown:

_shots = flow.Parent ()

Params will show up in the Action dialog:

shot_name = flow.Param('shot000")
first_frame = flow.IntParam(l)
last_frame = flow.IntParam(100)

def get_buttons(self):
return ['Create Shot', 'Cancel']

def run(self, button):
if button == 'Cancel':
return

Real 1life scenario should validate this value:
shot_name = self.shot_name.get () .strip()

Create the shot using our Parent () relation:
shot = self._shots.add(shot_name)

Configure the shot with requested values:
shot.first.set (self.first_frame.get ())
shot.last.set (self.last_frame.get ())

Tell everyone that the Shots list has changed
and should be reloaded:
self._shots.touch()

If you reload your project definitions you will now be able to create some shots and even configure them on the fly. A
Shot can be browsed by double-clicking on it. CTRL+DoubleClick will open it in a new view.

20 Chapter 2. Status

Kabaret Documentation, Release 2.0

Computed Value

We discussed earlier the fact that the kabaret.flow borrows ideas from the Workflow principles to overcome issues aris-
ing when using dataflow to represent a project pipeline. But there’s still great power to harvest in dataflow, especially
in lazy evaluation dataflow (a.k.a pull dataflow). At some point you will probably want to manage some Value holding
the result of a computation using other Values. And this computation should occur when needed (when a dependent
Value changes for exemple.)

We will showcase such a need by adding a length Value in our Shot class. This Value is computed using the first and
last Params, and is updated every time one of them changes.

This is done using the Computed Relation. This Relation defines a Child ComputedValue in the parent Object. The
parent Object is responsible for the computation of this Value.

Let’s add a length Computed relation to our Shot class, along with an implementation of is compute_child_value()
method:

class Shot (flow.Object) :

first = flow.IntParam(1l)
last = flow.IntParam(100)
length = flow.Computed /()

def compute_child_value(self, child_value):

rro

Called when a ComputedValue needs to deliver its result.
if child _value is self.length:
self.length.set (
self.last.get () -self.first.get () +1

If you reload your project definitions, you will see the new “Length” field in every Shot. And it has the correct value,
great !

But if you change the first or the last value of the Shot, the length does not update. Let’s fix this by specifying
that we want to react to changes on first and last. This is done by configuring their relation and implementing
child_value_changed():

class Shot (flow.Object) :

first = flow.IntParam(1l) .watched()
last = flow.IntParam(100) .watched()
length = flow.Computed/()

def child_value_changed(self, child_value):

rro

Called when a watched child Value has changed.

rru

if child_value in (self.first, self.last):
We invalidate self.length whenever self.first or self.last
changes:
self.length.touch ()

def compute_child_value(self, child_value):

rro

Called when a ComputedValue needs to deliver its result.

rro

(continues on next page)

2.2. Quick Start 21

Kabaret Documentation, Release 2.0

(continued from previous page)

if child _value is self.length:
self.length.set (
self.last.get () -self.first.get () +1

If you reload your project definitions you will notice that the Length fields shows an updated value whenever you
change the value of the First or Last field.

Divide, Compose and Conquer

Another advantage of kabaret.flow is how it helps you divide your pipelines into components and layers.

A classical dataflow let you encapsulate logic into nodes and connect them together. This is a great way to isolate
concerns into components, which is easier to develop, test and manage.

With kabaret.flow you can go even further by defining Objects composed of other Objects. It’s like having a dataflow
inside each node of your dataflow. It gives you the ability to not only isolate concerns into components, but also to
encapsulate and compose them into new components. You're actually layering responsibilities, which is known as the
good architecture when building complex software.

We are going to illustrate this by adding some content to our Shot Object.

Let’s say that a Shot is composed of consecutive tasks, and that a task has a status and a file that contains the work
done for that task. It’s an oversimplified case for a CG Pipeline, but it already contains two clearly separable concerns:
file naming conventions (Persistence Layer), and task status (Business Layer).

We’re going to lay down the structure for that:

class File(flow.Object) :

pass

class Task (flow.Object) :

status = flow.Param()
scene = flow.Child(File)

class Shot (flow.Object) :

first = flow.IntParam(1l) .watched()
last = flow.IntParam(100) .watched()
length = flow.Computed()

anim = flow.Child (Task)
lighting = flow.Child(Task)
comp = flow.Child(Task)

We’ve added some tasks to the Shot. Each Task has a status Value and a scene object which is a File.

Reload and you will discover a whole hierarchy in MyFirstProject. This hierarchy is your Workflow/Pipeline (Business
Layer). It is encapsulated in the Project component. This component uses the 7ask component, which is also in the
Business Layer. The Task uses the File component which is in the Persistence Layer.

Now you that we’ve clearly separated concerns, we can implement their functionalities and behavior.

22 Chapter 2. Status

https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html

Kabaret Documentation, Release 2.0

The purpose of the File is to provide a filename. This filename is not to be edited by the end user. It must be provided
by an authority responsible of applying naming conventions. Let’s implement a very simple strategy which consists
of a single function that turn some parameters into a filename. This function will be used by a ComputedValue in the
File:

import os

class File(flow.Object)

task = flow.Parent ()
filename = flow.Computed ()

def get_filename (self):
project = self.root () .project ()
store = project.settings.store.get ()
task_name = self.task.name ()
name = self.name ()
ext = '".ma'
return os.path.join(store, project.name (), task_name, name)+ext

def compute_child_value(self, child_value):
if child _value is self.filename:
self.filename.set (self.get_filename())

Note: Here we are using self.root().project() to access the project settings. This is a nice alternative to using many
Parent() relations. If you are wondering why not using something like a Project() relation, I'd say you have a point !
We can discuss it in the discord channel :}

After reloading your project definitions you will see how the filename of each File has its own value, and this value
comes from a well-isolated functional policy.

The purpose of the File is to be edited, so let’s add an Editor \o/

class EditAction (flow.Action) :
_file = flow.Parent ()

def get_buttons(self):
self.message.set ('<h2>Select an Editor</h2>")
return ['Open with Maya', 'Open in Text Editor']

def run(self, button):
Here we would select an executable depending on the button
or the file extension or anything really,
and use subprocess to run the editor.
print ('Editing the file:', self._file.filename.get ())

class File(flow.Object) :

task = flow.Parent ()
filename = flow.Computed ()

edit = flow.Child (EditAction)

(continues on next page)

2.2. Quick Start 23

https://discord.gg/NmJDHsN

Kabaret Documentation, Release 2.0

(continued from previous page)

In this oversimplified example the File is used only in the Task, but in real life you’d probably use it in many other
situations. Defining it as a component let you later extend it with functionalities like the EditAction or other Persistance
Layer features like version management. ..

Now let’s focus on the Task to see another example of concern isolation: the Status.

Worflows and Pipelines are all about Statuses. Statuses often contain the information used to trigger automations,
reporting, etc. And they need to have value among a defined list of possibilities. Let’s add this to our awesome flow !

First, we’re going to use a ChoiceValue as we want to restrict the possible values:

class TaskStatus (flow.values.ChoiceValue) :

CHOICES = ['INV', 'WIP', 'RTK', 'Done']

class Task (flow.Object) :

status = flow.Param('INV', TaskStatus)
scene = flow.Child(File)

This changes the GUI representation of the Task’s status field to a drop down menu:

Note: Kabaret provides default icons for many situations and this is what you see here. This is managed by the
kabaret.app.resources module and you can override and/or extend the icons as much as you want.

Second, we want to trigger something when the Status changes. That’s what Statuses are meant for. But the particular
details of what should be triggered depend on what the Status is bound to, so we are going to delegate it to the parent
Task:

class Task (flow.Object) :

status = flow.Param('INV', TaskStatus) .watched()
scene = flow.Child(File)

def child_value_changed(self, child_value):
if child_value is self.status:
self.send_mail notification ()

(continues on next page)

24 Chapter 2. Status

Kabaret Documentation, Release 2.0

(continued from previous page)

def send mail_notification(self):
If this was a real task there would be an assignee
that we could send a mail to...
print (
'Mailing to santa: status of Task is now '.format (
self.oid(), self.status.get()

And last, we want to report the Tasks statuses into the Shot. This status depends on each Task’s status and should be
computed every time a Task status changes. In order to achieve this, we will have the Tasks asking their Shot to update
their status when needed:

class Task (flow.Object) :

shot = flow.Parent ()
status = flow.Param('INV', TaskStatus) .watched()
scene = flow.Child(File)

def child_value_changed(self, child_value):
if child_value is self.status:
self.send_mail notification ()
self.shot.update_status/()

def send mail_notification(self):
If this was a real task there would be an assignee
that we could send a mail to...
print (
'Mailing to santa: status of Task is now '.format (
self.oid(), self.status.get ()

class Shot (flow.Object) :

first = flow.IntParam(1l) .watched()
last = flow.IntParam(100) .watched()
length = flow.Computed()

anim = flow.Child (Task)
lighting = flow.Child(Task)
comp = flow.Child(Task)

status = flow.Param('NYS') .ui (editable=False)

def update_status(self):
status = "WIP'
statuses = set ([
task.status.get ()
for task in (self.anim, self.lighting, self.comp)
1)
if len(statuses) ==
status = statuses.pop ()

self.status.set (status)

(continues on next page)

2.2. Quick Start 25

Kabaret Documentation, Release 2.0

(continued from previous page)

We could have used a Computed relation for the Shot’s status but this time we chose a simple Param (that the user
cannot edit) and we update its Value directly when a Task status changes. The best strategy to use will depend on your
case and your fondness. ..

There’s a last thing you may want to do: Give a hint of the Shot’s status in the Shots list. That requires two lines to
add to the Shots class:

class Shots (flow.Map) :
add_shot = flow.Child (AddShotAction)

@classmethod
def mapped_type(cls):
return Shot

def columns (self):
return ['Name', 'Ranges']

def _fill row_cells(self, row, item):
row['Name'] = item.name ()
row|['Ranges'] = '[{}->{}' . format (item.first.get (), item.last.get())

def _fill row_style(self, style, item, row):
style['icon'] = ('icons.status', item.status.get())

)

Mame Ranges

Fig. 6: Wooh ! Icons \o/

Conclusion
We’ve seen that the concept of extending Objects with Relations to other Objects is pretty simple to understand and to
use. And it can efficiently build almost anything using only Params, Actions and Maps.

There’s more in the toolbox, like Refs which are Values pointing to other Objects, ConnectActions that let you react to
Drag’N’Drop in the GUI, Relation configuration that let you control their GUI representation, etc.

26 Chapter 2. Status

Kabaret Documentation, Release 2.0

kabaret.flow has been used in small projects like commercials with ~10 shots and a team of ~10 artists, as well as
feature movies with hundreds of shots and complex production tracking tools.

What are you going to use if for ? :D

Here is what we built in less than 150 lines of simple code:

Options [DEV]

QQC

Name Ranges

Fig. 7: (the menu you see in the upper-right corner is popped up by a RMB on the page path)
Of course, in real life, pipeline management is about doing quick and dirty stuff. That’s the cool thing about

kabaret.flow: you can do robust and well-prepared things, but it’s not mandatory and you can also do bad things
whenever you want/need. We’ll assume you don’t need any tutorial for that A.A

Final Code

from _ future import print_function
import os

from kabaret import flow

class EditAction (flow.Action) :

(continues on next page)

2.2. Quick Start 27

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

)

43

44

45

46

47

48

49

50

51

52

53

55

56

58

59

60

61

62

63

64

65

Kabaret Documentation, Release 2.0

(continued from previous page)

_file = flow.Parent ()

def get_buttons (self):
self.message.set ('<h2>Select an Editor</h2>")
return ['Maya', 'Sublime']

def run(self, button):
Here we would select an executable depending on the button
or the file extension or anything really...
and use subprocess to run the editor.
print ('Editing the file:', self._file.filename.get())

class File(flow.Object) :

task = flow.Parent ()
filename = flow.Computed()
edit = flow.Child (EditAction)

def get_filename (self):
project = self.root () .project()
store = project.settings.store.get ()
task_name = self.task.name ()
name = self.name ()
ext = '.ma'
return os.path.join(store, project.name (), task_name, name)+ext

def compute_child_value(self, child_value):
if child_value is self.filename:
self.filename.set (self.get_filename())

class TaskStatus (flow.values.ChoiceValue) :

CHOICES = ['INV', 'WIP', 'RTK', 'Done']

class Task (flow.Object) :

shot = flow.Parent ()
status = flow.Param('INV', TaskStatus) .watched()
scene = flow.Child(File)

def child_value_changed(self, child_value):
if child_value is self.status:
self.send_mail_notification|()
self.shot.update_status ()

def send mail_notification(self):
If this was a real task there would be an assignee
that we could send a mail to...
print (
'Mailing to santa: status of Task {/r} is now {!/r}'.format (
self.oid (), self.status.get()

(continues on next page)

28

Chapter 2. Status

66

67

68

69

70

71

72

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Kabaret Documentation, Release 2.0

(continued from previous page)

class Shot (flow.Object) :

first = flow.IntParam(1l) .watched()
last = flow.IntParam(100) .watched()
length = flow.Computed/()

anim = flow.Child(Task)
lighting = flow.Child(Task)
comp = flow.Child(Task)

status = flow.Param('NYS') .ui (editable=False)

def update_status(self):
status = "WIP'
statuses = set ([
task.status.get ()
for task in (self.anim, self.lighting, self.comp)
1)
if len(statuses) == 1:
status = statuses.pop ()

self.status.set (status)

def child_value_changed(self, child_value):

rro

Called when a watched child Value has changed.

if child _value in (self.first, self.last):
We invalidate self.length whenever self.first or self.last
changes:
self.length.touch()

def compute_child_value(self, child_value):

rro

Called when a ComputedValue needs to deliver its result.

rro

if child_value is self.length:
self.length.set (
self.last.get () -self.first.get () +1

class AddShotAction (flow.Action):

_shots = flow.Parent ()
shot_name = flow.Param('shot000")
first_frame = flow.IntParam(1l)

last_frame = flow.IntParam(100)

def get_buttons(self):
return ['Create Shot', 'Cancel']

def run(self, button):
if button == 'Cancel':
return

(continues on next page)

2.2. Quick Start

29

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

Kabaret Documentation, Release 2.0

(continued from previous page)

Real life scenario should validate this value:
shot_name = self.shot_name.get ().strip()

Create the shot using our Parent () relation:
shot = self._shots.add(shot_name)

Configure the shot with requested values:
shot.first.set (self.first_frame.get ())
shot.last.set (self.last_frame.get ())

Tell everyone that the Shots list has changed
and should be reloaded:
self._shots.touch()
class Shots (flow.Map) :
add_shot = flow.Child (AddShotAction)
@classmethod
def mapped_type(cls):

return Shot

def columns (self):
return ['Name', 'Ranges']

def _fill row_cells(self, row, item):
row['Name'] = item.name ()

row['Ranges'] = '"{}->/{}" . format (item.first.get (), item.last.get())

def _fill row_style(self, style, item, row):
style['icon'] = ('icons.status', item.status.get())

class ProjectSettings (flow.Object):
store = flow.Param('/tmp/PROJECTS")
framerate = flow.IntParam(24)

image_height = flow.IntParam(1080)
image_width = flow.IntParam(1920)

class Project (flow.Object) :

shots = flow.Child(Shots)
settings = flow.Child(ProjectSettings)

2.3 Usage

Soon !..

30

Chapter 2. Status

Kabaret Documentation, Release 2.0

2.4 Guru

Soon !..

2.5 Installation

kabaret will run with most python versions (2.7+, 3.3+).

You will need pip to install kabaret. Recent versions of python have it pre-installed, you can test its availability by
importing it:

1 ’import pip

If nothing happens, you’re good to go. But if an ImportError is raised, you will need to install pip. Download the file
get-pip.py then run the following:

’python get-pip.py

That’s it, pip is now installed. If you want to know more about pip you can read its documentation

As any other package, kabaret can be installed in your python’s site-package and then used after a simple “import
kabaret”.

This is convenient if you have administrator privileges on your python installation, and if you plan on using kabaret as
a standard python package.

Chances are that you will need more than that though:
* Installing kabaret at work for personal use may raise access privileges issues.

» Using kabaret embedded in Blender, Maya or any other extended python interpreter raises even more questions.
(Do they even support pip ?)

» Keeping installation up to date on every station is not a fun task.

The Shared installation is often the choice to go unless you’re just testing.

2.5.1 Local

The local installation is the most straightforward and can be used to discover Kabaret.

’python -m pip install -U kabaret

If you don’t have a Qt wrapper installed, you can install PySide2 (or any other one available for your python version):

’python -m pip install PySide2

You can now follow the first tutorial.

2.5.2 Shared

A shared installation puts kabaret and all its dependencies in a folder of your choice (most probably one shared across
all workstations).

2.4. Guru 31

https://bootstrap.pypa.io/get-pip.py
https://pip.pypa.io/en/stable/installing/
./tutorials/demo_show_case.html

Kabaret Documentation, Release 2.0

mkdir ./KABARET_INSTALL
pip install —-install-option="--prefix=./KABARET_INSTALL" -U kabaret

Depending on your setup, you may want to install a Qt wrapper there too:

’pip install --install-option="--prefix=./KABARET_INSTALL" PySide2

In order to use this installation, you will need to either configure your PYTHONPATH environment variable:

’set PYTHONPATH=$PYTHONPATH: /path/to/KABARET_INSTALL

Or manage your sys.path before importing kabaret in python

import sys
sys.path.append (path_to_kabaret_install)

If you use kabaret with several python interpreters (Nuke, Maya, Houdini. ..), you should create a separate shared
installation for each one to avoid issues regarding compiled bytecode.

2.5.3 Dev

Clone the repo, follow instructions in cmds/README.txt (might be outdated).

Don’t forget to join us on the discord, that’s where the help is !

2.5.4 Dependencies

Automatic

When installing kabaret with pip, those packages will automatically be installed as dependecies:

* redis (<3.0.0)
° qtpy

* Six
Manual

You will need a pre-installed Qt Wrapper: PyQt4, PyQt5, PySide or PySide2. If you don’t know which one you to
use, you can go with PySide2:

python -m pip install PySide2

Extra

Kabaret uses various functionalities of redis. You can download one from this page (windows users can download
here) and start a server with the default configuration, it will be far enough for testing.

You can also get a free online redis instance at redislab.com.

When deploying kabaret into production, we recommand getting acquainted with redis management, most notably
with the persistence options. The bare minimum is probably to ensure your server dumps to a file that you backup
every now and then.

32 Chapter 2. Status

https://www.kabaretstudio.com/support
https://redis.io
https://redis.io/download
https://github.com/MicrosoftArchive/redis/releases
https://redislabs.com/
https://redis.io/topics/persistence

Kabaret Documentation, Release 2.0

2.6 Flow Reference Guide

Warning: Documentation in Progress. ..

The Flow let you model you project structure, pipeline and tracking strategies.

< insert introductionnal description here >

2.6.1 Exceptions

exception kabaret.flow.MissingChildError (oid, child_name)
exception kabaret.flow.MissingRelationError (oid, relation_name)
exception kabaret.flow.RefSourceTypeError

exception kabaret.flow.RefSourceError (ref oid, source_oid)

2.6.2 Object

class kabaret.flow.Object (parent, name)

child_value_changed (child_value)
Called when a watched child Value has changed. See relations.Param.watched() and values.Value.watch()

compute_child_value (child_value)
Called when a ComputeValue child need its value to be computed.

This happens when a computed value was touched before someone asks for its value.
You must set the result of the computation to the child_value.

classmethod get_source_display (oid)
Returns the text to display when showing a Ref pointing to the object of type cls with the id oid.

This is used by Connection relations’ GUL

touch ()
Force notification that the object has changed.

class kabaret.flow.SessionObject (parent, name)
The SessionObject overrides its default value store with a Memory ValueStore() (all value die when the session
ends)

As the default value store is inherited by parent Objects, the whole branch under this one will also be “in memory
only”.

class kabaret.flow.ThumbnailInfo (parent, name)
This object defines the interface needed to provide “object image view” in the GUIL.

You define an object’s thumbnail by defining its get_thumbnail_object() method and returning a related Thumb-
naillnfo instance:

class MyObject(Object):
_thumbnail = Child(MyThumbnailln)

2.6. Flow Reference Guide 33

Kabaret Documentation, Release 2.0

get_default_height ()
Returns the default height of the thumbnail when first show in GUIL.

get_first last_fps()
If is_sequence() returns True, this must return the index of the first and the last frames, and the frame per
second rate

get_label ()
Returns the label to display on the thumbnail. A value of None will use the basename of the thumbnail
source file.

get_path ()
Returns the path of the thumbnail source. If is_sequence() returns True, the path must contain a formater
for the frame number:

/path/to/my/images.%04d.jpg
Supported images types are roughtly the same as a standard webbrowser. (I.e: no EXP support here.)
get_resource ()
If is_resource() returns True, this must return a 2d string: resource_folder_name, resource_name

is_image ()
Must return True if your thumbnail source is a single image. If this returns True, does methods need to be
implemented:
get_default_heigth() get_label() get_path()

is_resource ()
Must return True if your thumbnail source is a resource file. If this returns True, does methods need to be
implemented:

get_default_heigth() get_label() get_resource()

is_sequence ()
Must return True if your thumbnail source is a sequence of images. If this returns True, does methods need
to be implemented:

get_default_heigth() get_label() get_path() get_first_and_last()

2.6.3 Relations

class kabaret.flow.object._Relation (related_type)

This is the base class of all relations. You must use one of the subclasses.
Relations are descriptors managing the instantiation and the access to object related to the relation owner.
You can configure the relation behavior using the ui () and editor () methods.

ui (icon=None, editor=None, editable=None, label=None, group=None, hidden=None, tooltip=None,
expanded=None, expandable=None, **editor_options)
Configure the relation GUI. This method returns self so that you can chain it in assigment:

meh = MyRelation('example') .ui (label='Amazing')

class kabaret.flow.Child (related_type)

The Child relation sets an Object as the Child of the owner of the relation (wich in turn becomes the parent)

class kabaret.flow.Parent (nb_levels=1)

The Parent relation give access to the related object’s parent or grand-parents.

34

Chapter 2. Status

Kabaret Documentation, Release 2.0

get_ui (of=None)
Overridden to return the ui of the parented Object. See the _Relation.get_ui() class in flow.object.

class kabaret.flow.Param (default_value=None, value_type=None)
A Child relating to a Value or one of its subclasses.

watched (b=True)
Configures the related value to be watched or not (default is False). Watched value call their parent’s
child_value_changed() when changed.

kabaret.flow.Separator ()
Returns a Param relation showing an horizontal line in GUL

kabaret.flow.Label (text, label=")
Returns a Param relation showing a (potentially html) text in GUL

class kabaret.flow.SessionParam (default value=None, value_type=None)
A Param relating to a SessionValue.

class kabaret.flow.IntParam (default_value=None, value_type=None)
A Param relating to an TntValue.

class kabaret.flow.BoolParam (default_value=None, value_type=None)
A Param relating to a BoolValue.

class kabaret.flow.FloatParam (default value=None, value_type=None)
A Param relating to a FloatValue.

class kabaret.flow.StringParam (default_value=None, value_type=None)
A Param relating to a St ringValue.

class kabaret.flow.DictParam (default_value=None, value_type=None)
A Param relating toa DictValue.

class kabaret.flow.OrderedStringSetParam (value_type=None)
A Param relating to an OrderedStringSetValue.

class kabaret.flow.HashParam (value_type=None)
A Param relating to a HashValue.

class kabaret.flow.Computed (cached=False, store_value=False, computed_value_type=None)
A Param relating to a ComputedValue

The value computation is delegated to the parent’s compute_child_value() method. The
‘cached” and ‘store_value’ constuctor arguments will configure the ComputedValue. (See
kabaret.flow.values.Computed Value)

You can use a subclass of ComputedValue by specifying computed_value_type in the constructor

class kabaret.flow.Connection (related_type=None, ref_type=None)
A Child relating to a Re £ subclass.

watched (b=True)
Configures the related value to be watched or not (default is False). Watched value call their parent’s
child_value_changed() when changed.

2.6.4 Values

class kabaret.flow.values.Value (parent, name)

DEFAULT EDITOR = None

2.6. Flow Reference Guide 35

Kabaret Documentation, Release 2.0

ICON = 'value'
get ()

notify ()
Subclasses can

override this to do something after values change. Default implementation calls

‘child_value_changed’ in the parent object if self._watched is True.

revert_ to_default ()

set (value)

set_default value (value)

set_watched (b)

class kabaret.flow

.values.SessionValue (parent, name)

This Value does not store itself in the value store. It will reset to its default value for each session.

get ()

set (value)

set_default_value (value)

class kabaret.flow

DEFAULT_EDITOR
decr (by=1)

incr (by=1)

set (value)
validate (value)

class kabaret.flow

DEFAULT_EDITOR
set (value)
validate (value)

class kabaret.flow

DEFAULT EDITOR
set (value)
validate (value)

class kabaret.flow

DEFAULT_ EDITOR
set (value)
validate (value)

class kabaret.flow

DEFAULT_ EDITOR

.values.IntValue (parent, name)

= 'int'

.values.BoolValue (parent, name)

= 'bool'

.values.FloatValue (parent, name)

= 'float'

.values.StringValue (parent, name)

= 'string'

.values.DictValue (parent, name)

= 'mapping'

36

Chapter 2. Status

Kabaret Documentation, Release 2.0

set (value)
validate (value)

class kabaret.flow.values.OrderedStringSetValue (parent, name)
A list off string ordered by score. You cant set that value, you can only edit it.

DEFAULT_EDITOR = 'set'
add (member, score)

get ()

get_range (first, last)
get_score (member)

has (member)

len ()

remove (member)
revert_to_default ()
set (value)

set_default_ wvalue (value)
set__score (member, score)

class kabaret.flow.values.HashValue (parent, name)

DEFAULT_EDITOR = 'mapping'
as_dict ()

del_key (key)

get ()

get_key (key)
has_key (key)

keys ()

len ()

set (value)

set_key (key, value)
update (**new_values)
validate (value)

class kabaret.flow.values.ComputedValue (parent, name)

compute ()
Subclasses can override this to compute the value (and call set()). Default implementation calls ‘com-
pute_child_value’ in the parent object.

get ()
set (value)

set_cached (b))

2.6. Flow Reference Guide 37

Kabaret Documentation, Release 2.0

set_store_value (b)

touch ()
Force notification that the object has changed.

class kabaret.flow.values.ChoiceValue (parent, name)

This Value provides a list of potential/acceptable values. You can set the CHOICE class attribute to define this
list.

If STRICT_CHOICES is True, the value must exists in the CHOICES attribute or a ValueError will be raised
by set() If STRICT_CHOICES is False, any value can do.

CHOICES = []

DEFAULT_EDITOR = 'choice'
STRICT_CHOICES = True
choices ()

set (value)

class kabaret.flow.values.MultiChoiceValue (parent, name)

A MultiChoiceValue is like a Choice but stores a list of those acceptable values.
DEFAULT EDITOR = 'multichoice'
add (extra_choice)

set (value)

class kabaret.flow.values.Ref (parent, name)

A Ref stores a reference to an Object. The set() method accepts only Object of the type (or list of types) in
SOURCE_TYPE class attribute. The get() method returns the Object. If you only need the Object’s oid, use
get_source_oid() as it does not require object lookup.

DEFAULT _EDITOR = 'ref'
ICON = 'ref'

SOURCE_TYPE = None
can_set (source_object)

get ()

get_source_oid()

static resolve_refs (object)
set (new_source_object)
source_touched ()

source_value_changed (old_value, new_value)

2.6.5 Actions

class kabaret.flow.Action (parent, name)

allow_context (context)
Override this to control where the action will be accessible. Return True to allow the action in the given
context, False to disallow it, and None to fall back to legacy behavior (SHOW_IN_PARENT_* class
attributes)

38

Chapter 2. Status

Kabaret Documentation, Release 2.0

Default is to return None.
Parameters context — string. the context fetching the actions to show.

Usually the type name of the View, optionally followed by sub-categories. The built-in Flow view will
send:

Flow.details the action’s parent details representation Flow.inline the action’s parent inline repre-
sentation Flow.indline>>> the inline representation of (the number of ‘>’ depicts the depth of the
inline action)

Returns True/False/None

get_buttons ()
Returns a list of string suitable as the ‘button’ argument for a call to self.run().

NB: If the action cannot run, you should set a desciption why in self.message, return [‘Cancel’] and handle
that in run(). This is far better than returning False from needs_dialog() or let the run() method decide to
do nothing since the user will not have a clear feedback showing that nothing happened. ..

classmethod get_result (close=None, refresh=None, goto=None, goto_target=None,

goto_target_type=None, next_action=None)
The value returned by run(button) will be inspected by callers to decide how they should react. This helper

class method will generate a result matching its args:
close: (bool) Prevent the action dialog to be closed when set to False

refresh: (bool) Force a reload of the parent page avec dialog close (This should not be needed
anymore thanks to touch() calls...)

goto: (oid) Force the caller to load the given oid page.

goto_target: (string or “ NEW_"") The string identifer of the view targeted by the goto direc-
tive. The default targeted view is the current one or the one that created the action dialog.
Spcecifying a target can be usefull to alter another view. If the specified target is not found,
a new view will be created with this identifier so that further use of the action will affect this
new view. The special identifier “_ NEW_" can be used to force the creation of a new view.

goto_target_type: (string) The type of the view targeted by the goto directive. Defaultis ‘Flow’
An easy way to find out the available type names is to use a obviously invalid value like “??7”
and look for the error message: it will contain a list of available type names.

next_action: (oid) Force the dialog to not close but load the ui for the action with the given oid.
This is the way to implement “Wizard Pages”

needs_dialog ()
May be overriden by subclasses to return False if the action does not need to show a dialog. Action without
dialog are called with run(button=None), plus the ‘goto’ and ‘next_action’ fields of the returned value do
the same.

NB: If the action cannot run, it should show a dialog with a desciption why in self.message (override
get_button() to do so).

run (button)
The return value should be None or the return value of a self.get_result() call. GUI will inspect the returned
value and act upon it.

class kabaret.flow.ConnectAction (parent, name)
Subclasses will want to overwrite those methods:

 accept_label: return the label to show in GUI if the objects and urls are acceptable, None otherwise.

2.6. Flow Reference Guide 39

Kabaret Documentation, Release 2.0

e run: to do the job.
The run method is guaranted to be called only if accept_label did not return None.

class kabaret.flow.ChoiceValueSetAction (parent, name)

needs_dialog()
May be overriden by subclasses to return False if the action does not need to show a dialog. Action without
dialog are called with run(button=None), plus the ‘goto’ and ‘next_action’ fields of the returned value do
the same.

NB: If the action cannot run, it should show a dialog with a desciption why in self.message (override
get_button() to do so).

run (button)
The return value should be None or the return value of a self.get_result() call. GUI will inspect the returned
value and act upon it.

class kabaret.flow.ChoiceValueSelectAction (parent, name)

get_buttons ()
Returns a list of string suitable as the ‘button’ argument for a call to self.run().

NB: If the action cannot run, you should set a desciption why in self.message, return [‘Cancel’] and handle
that in run(). This is far better than returning False from needs_dialog() or let the run() method decide to
do nothing since the user will not have a clear feedback showing that nothing happened. . .

run (button)
The return value should be None or the return value of a self.get_result() call. GUI will inspect the returned
value and act upon it.

2.6.6 Maps

class kabaret.flow.Map (parent, name)
A Map manages a per-instance list of children Objects.

add (name, object_type=None)
Adds an object to the map. If provided, object_type must be a subclass of the map’s mapped_type (returned
by the classmethod mapped_type())

bake_order ()
Stores a new mapped names order according to the _item_cmp() method. This should not be useful but in
edge cases like you loaded the order from an external source and did not get a satisfying order in mapped
items.

Note that this cannot express an order based on anything else than the mapped name.

child_value_changed (child_value)
Called when a watched child Value has changed. See relations.Param.watched() and values.Value.watch()

clear ()
Remove all Objects from the Map.

columns ()
Returns the list of columns name. Subclasses may reimplement this and rows() to provide inline informa-
tions about the children.

Default is to return [‘Name’] which will contain the mapped object name in rows()

40 Chapter 2. Status

Kabaret Documentation, Release 2.0

compute_child_value (child_value)
Called when a ComputeValue child need its value to be computed.

This happens when a computed value was touched before someone asks for its value.
You must set the result of the computation to the child_value.

current_page_num/()
Subclasses must override this and page_size() to enable paging.

get_mapped (name)
Returns the item mapped under ‘name’, instanciating it if not yet done.

classmethod get_source_display (oid)
Returns the text to display when showing a Ref pointing to the object of type cls with the id oid.

This is used by Connection relations’ GUIL.

classmethod mapped type ()
Returns the default (which is also be the base) type of the mapped objects. Subclasses may override this
to specialize the children type.

Default is to return Object.

page_size()
Subclasses must override this and current_page_num() to enable paging.

remove (name)
Removes an Object from the map.

row (item)
Returns one of the entry returned by rows:

’(item_oid, cells_data)

rows ()
Returns a list of

’ (oid, dict)

per child in the order given by mapped_names(). All dicts must contains the keys found in self.columns()
+ an optional “_style” key.

Subclasses should not reimplement this but _fill_row_cells() and _fill_row_style() to customize table cells
for the mapped items.

Default behavior is to return the ‘name’ keys only in rows.

The _style value in the row must be a dict with those optional keys:
* icon: the icon in first column
* background-color: the whole row background-color
* foreground-color: the row font color

* <col_name>_<property>: set the <property> style in column <col _name> (example:
‘name_icon’)

touch ()
Force notification that the object has changed.

class kabaret.flow.DynamicMap (parent, name)
A DynamicMap contains a procedural list of items. This list is computed every time its is needed.

2.6. Flow Reference Guide 41

Kabaret Documentation, Release 2.0

One must subclass this an implement the methods: mapped_names(self, page_num=0, page_size=None)
and optionnaly: _get_mapped_item_type(self, mapped_name)

columns ()
Returns the list of columns name. Subclasses may reimplement this and rows() to provide inline informa-
tions about the children.

Default is to return [‘Name’] which will contain the mapped object name in rows()

current_page_ num ()
Subclasses must override this and page_size() to enable paging.

get_mapped (name)
Returns the item mapped under ‘name’, instanciating it if not yet done.

classmethod mapped type ()
Returns the default (which is also be the base) type of the mapped objects. Subclasses may override this
to specialize the children type.

Default is to return Object.

page_size ()
Subclasses must override this and current_page num() to enable paging.

row (item)
Returns one of the entry returned by rows:

’(item_oid, cells_data)

rows ()
Returns a list of

’(oid, dict)

per child in the order given by mapped_names(). All dicts must contains the keys found in self.columns()
+ an optional “_style” key.

Subclasses should not reimplement this but _fill_row_cells() and _fill_row_style() to customize table cells
for the mapped items.

Default behavior is to return the ‘name’ keys only in rows.

The _style value in the row must be a dict with those optional keys:
* icon: the icon in first column
* background-color: the whole row background-color
* foreground-color: the row font color

* <col_name>_<property>: set the <property> style in column <col_name> (example:
‘name_icon’)

2.7 App Reference Guide

Note: This documentation in still in progress. Your feedback is welcome :)

The kabaret framework is a modular system that will help you create standalone or embedded applications.

42 Chapter 2. Status

Kabaret Documentation, Release 2.0

When building a application, you will start by creating a kabaret .app.session.KabaretSession (or more
likely, one of its subclasses).

A Session contains some Actors that each provide specific functionnalities and commands to use them.
A Session containts some Views that use the commands to display and modify the informations managed by Actors.

A Session manages the communication between other sessions on the network, deals with UI (events, layouts, ...)
and logging.

Frameword devellopers can extend kabaret by providing new Actors and/or Views. When a User wants to use an
extension, he must subclass a Session to register the additionnal Actors / Views.

Once you session is properly configured, you can use one or more instances of it in a single python interpretor. But
you can’t share sessions between threads.

You can define multiple session types: a standalone GUI for User, another for administration, a headless one acting as
a worker waiting for orders, . ..

You can navigate to the Create My Studio tutorial to get you started.

2.7.1 Session

2.7.2 Resources

Generic file resouces repository.

This package provide a way to register some folders under a given name (add_folder ()) and later retreive files by
their basename and registered folder name (get ()).

When registering a folder with the same name as another one, the lookup will favorize the last one and fall back to the
first one.

This way you can extend and/or override the resources available under a given folder name.

You can deal with any kind of files, but in the case of images there are a couple helper functions: get_pixmap ()
and get_icon ()

Every search result is cached so disk access is minimized. You don’t need to cache your resources next to their usage
code, just can keep calling resources.get () as much as you want.

You can inspect the available resources with get_ folder _names (), 1list_folder() and
list_folder_paths ()

Note: Files starting with an underscore __ are ignored.

exception kabaret.app.resources.NotFoundError
Raised when the the resource was not found. Note that this is a ResourcesError too.

exception kabaret.app.resources.ResourcesError
Raised when the folder_name is unknown.

kabaret.app.resources.add_folder (name, path)
Register a folder to the search path.

The name will be used to access files.
You can use get__folder_names () to get a list of all declared names.

The path can be a file inside the folder to register, or the path of the folder itself.

2.7. App Reference Guide 43

./tutorials/create_my_studio.html

Kabaret Documentation, Release 2.0

If a folder with the same name was previously added, the files from the last one overrides the previous one but
the previous files not available in the last one are still accessible.

In other words: the last call overrides and extends the previous ones.

Typical resource declaration:

Listing 1: my_studio/icons/emoji/__init__.py

We're in a package folder containing some png files

Every file will be accessible, and overrides previous
declarations of 'icons.emoji' files

import kabaret.app.resources
kabaret.app.resources.add_folder('icons.emoji', _ file)

Listing 2: my_studio/gui.py

Be sure to have the resource modules imported at least once
This is typically done in the module defining your session
from my studio.icons import emoji

Typical resource access:

Listing 3: my_studio/flows/my_dope_flow/__init__.py

Use anywhere
from kabaret.app import resources
icon = resources.get ('icons.emoji', 'sunglasses')

See also:
get_icon () get_pixmap ()

kabaret.app.resources.get (folder_name, file_name)
Returns the file named £ile_name in the folder registered as folder_name.

kabaret.app.resources.get_folder_names ()
Returns a list of available folder names.

kabaret.app.resources.get_icon (icon_ref, for_widget=None, disabled_ref=None)
Same as get__pixmap (), but returns a Qlcon

If icon_refisanint, for_widget must not be None and its current QStyle will be used to return the QIcon
pointed by icon_ref.

If icon_ref is a 2D tuple, it is used to call get_pixmap (xicon_ref) ()
If icon_ref is a file path, an icon is created from this file.

if disable_ref is not None, it must be a 2D tuple suitable for get_pixmap (*disabled_ref) () and will
be used as the “disabled” state of the icon.

Warning: calls with different disabled_ref for the same icon_ref has undefined behavior.

kabaret.app.resources.get_pixmap (folder_name, pixmap_name)
Same as get (), but returns a QPixmap

kabaret.app.resources.list_folder (folder_name)
Returns a list of resource names available in folder_name.

kabaret.app.resources.list_folder_ paths (folder_name)
Return a list of list of file_name for folder_name. (overrides come first)

44 Chapter 2. Status

Kabaret Documentation, Release 2.0

2.8 Featured Extensions

Kabaret delivers an extensible architecture so that whatever is the scope of a missing feature, one can implement it
without modifying Kabaret’s code, and package the result to share it with the community.

Here is a list of extensions we like. If you want to be listed here, please contact us on the development forum.

2.8.1 Script View

The kabaret.script_view package is a GUI extension that give the user the ability to edit and execute python scripts
as if they were methods of a selected flow object.

A geek tool for the mass, a must have for the Geeks :D

2.8.2 InGrid Objects and View

Note: This is a work in progress. API is not finalized.

The kabaret.ingrid package is a Flow and GUI extension. It contains Flow objects that let you configure a Grid of
Flow object, and a new View to visualise and edit them.

The uses will be able to drop Object on InGrid views to discover and load configurations, as well as use Action in the
Flow that opens new InGrid views with a specific configuration.

2.8.3 Gantt Objects and View

Note: This is a work in progress and may not be available at the time you read it.

The kabaret.gantt package is a Flow, Session and GUI extension. It contains Flow objects holding time-related
parameters to help you build time related entities, an Actor providing commands to manipulate those objects from the
GUIL, and a Gantt view to visualise and edit them.

2.8.4 Subprocesses Actor

Note: This is a work in progress and may not be available at the time you read it.

The kabaret.subprocesses package is a Session extension with an Actor to start and watch subprocesses.

Examples are provided in the documentation to configure and start subprocess from a Flow object.

2.8.5 Users Actor

Note: This is a work in progress and may not be available at the time you read it.

The kabaret.users package is a Session extension with an Actor to manage teams of users and their preferences.

2.8. Featured Extensions 45

http://groups.google.com/group/kabaret-dev
https://pypi.org/project/kabaret.script_view/
https://pypi.org/project/kabaret.ingrid/
https://pypi.org/project/kabaret.gantt/
https://pypi.org/project/kabaret.subprocesses/
https://pypi.org/project/kabaret.users/

Kabaret Documentation, Release 2.0

Note that there’s a discussion going on about whether this is the job of an Actor or for some Flow object. Depending
on the outcome, this actor may not make it to the public. ..

2.8.6 Naming

kabaret.naming

This package is actually not an extension as it is completely independent from kabaret. Developed at SupamonkS
Studio, it was used before kabaret existed.

Somewhat obsolete if you have the chance to use Kabaret, we wanted to share it anyway because many people found
it awesome :D

Here is the package on PyPI

2.9 FAQ & Fun Facts

¢ Where does the name ‘Kabaret’ come from? Kabaret was initially developed at Supamonks Studio. Supa-
monks’ in-house software and tools are named with girls first names like:

Becassine - she let you bake an animation scene (‘bake a scene’)

Rebeka - she let you bake in batch (Re-Bake)

Trinity - she stores tree shaped data on disk.

Naomie - she deals the naming conventions

Debby - she’s the interface to the DataBase
- Etc.

We decided not to push those names to the open source version but we wanted to keep a hint of girl power
)
Also, we like the French Touch it gives.

* Where does the Kabaret logo come from? The logo draws a strike-through ‘K’ symbol.

It’s based on a phonetic pun in French.

In French “a kabaret” is “un cabaret”. It is phonetically the same as “un K barré” which in English means
“a strike through ‘K’”.

It so happens that a strikeout ‘K’ is the symbol of the Laos money, the Loa Kip. Laos is a communist
society where the concept of possession is unknown and the word for “mine” is the same as the word for
“yours”. This is a great match with our open source spirit.

We enjoy the idea that branding the Loa Kip could put Laos in focus and help this great country.

Laos is the most heavily bombed country in the world. They need your help and you should donate to help
with the Lao UXO eradication efforts.

¢ Where do I get support?
You can join the discord channel here:
— Kabaret Studio

We’re evaluating the idea of using Slack instead of Discord. If you want to +1 this, come and tell us on
discord ;)

46 Chapter 2. Status

http://www.supamonks.com
http://www.supamonks.com
https://pypi.org/project/kabaret.naming/
http://en.wikipedia.org/wiki/Lao_kip
http://www.uxolao.org/Donating.html
http://www.uxolao.org/Donating.html
https://discord.gg/NmJDHsN

Kabaret Documentation, Release 2.0

2.10 Credits

2.10.1 Authors

First versions of Kabaret were conceived and implemented between 2012 and 2015 at SupamonkS Studio, Paris.
The primary authors are (and/or have been):

e Damien ‘Dee’ Coureau

* Sebastien ‘Zwib’ Ho

* Valerian Prevost

¢ Ivans Saponenko

» Steeve ‘Firegreen’ Vincent

We accumulate experience as Artists, Technical Directors, Developer and Production Director on hundreds of commer-
cial spots and commercial series, as well as on VFX and Full CG features movies like Blueberry, Splice, Irreversible,
Despicable Me, The Lorax...

We have a deep faith in the open source philosophy and we wish every CG Talent could focus on the beauty of their
work (may it be cost tracking, pixel enhancement, or code magnificence) instead of struggling with the machine.
Kabaret is our contributions to make this dream get real.

We hope you’ll join us in this adventure.

2.10.2 Mentors

Many ideas in Kabaret come from the outstanding people we had the chance to meet or work with.
Most notably:

¢ Etienne ‘Chex’ Pecheux, on the dataflow and automation.

¢ Albert ‘Lobo’ Bonnefous, on the overall CG world.

¢ Pierrick ‘Ick’ Brault, on pipeline and asset exploitation.

e Thierry ‘Mamouth’ Lauthelier, for ignition.

* Alexis Casas, for understanding and support.

* Nicolas ‘Nikko’ Brack, for endless higher expectations :)

2.10.3 Contributors

We welcome patches, bug reports and support. If you think your name should appears here, please contact us on the
Kabaret Studio discord channel.

2.10. Credits a7

http://www.imdb.com/rg/em_share/title_web/title/tt0276830/
http://www.imdb.com/rg/em_share/title_web/title/tt1017460/
http://www.imdb.com/rg/em_share/title_web/title/tt0290673/
http://www.imdb.com/rg/em_share/title_web/title/tt1323594/
http://www.imdb.com/rg/em_share/title_web/title/tt1482459/
https://discord.gg/NmJDHsN

Kabaret Documentation, Release 2.0

48

Chapter 2. Status

CHAPTER 3

Indices

* genindex

¢ modindex

49

Kabaret Documentation, Release 2.0

50

Chapter 3. Indices

Python Module Index

k

kabaret.app.resources, 43
kabaret.flow, 33

51

Kabaret Documentation, Release 2.0

52

Python Module Index

Index

Symbols

_Relation (class in kabaret.flow.object), 34

A

Action (class in kabaret.flow), 38
add () (kabaret.flow.Map method), 40
add () (kabaret.flow.values.MultiChoiceValue method),
38

(kabaret.flow.values.OrderedStringSetValue
method), 37
add_folder () (in module kabaret.app.resources), 43
allow_context () (kabaret.flow.Action method), 38
as_dict () (kabaretflow.values.HashValue method),

37

add ()

B

bake_order () (kabaret.flow.Map method), 40
BoolParam (class in kabaret.flow), 35
BoolValue (class in kabaret.flow.values), 36

C

can_set () (kabaret.flow.values.Ref method), 38
Child (class in kabaret.flow), 34

child_value_changed/() (kabaret.flow.Map
method), 40

child_value_changed() (kabaret.flow.Object
method), 33

CHOICES (kabaret.flow.values.ChoiceValue attribute),
38

choices () (kabaret.flow.values.ChoiceValue method),
38

ChoiceValue (class in kabaret.flow.values), 38

ChoiceValueSelectAction (class in
kabaret.flow), 40

ChoiceValueSetAction (class in kabaret.flow), 40

clear () (kabaret.flow.Map method), 40

columns () (kabaret.flow.DynamicMap method), 42

columns () (kabaret.flow.Map method), 40

compute () (kabaret.flow.values. ComputedValue
method), 37

compute_child_value () (kabaret.flow.Map
method), 40

compute_child_value () (kabaret.flow.Object
method), 33

Computed (class in kabaret.flow), 35
ComputedValue (class in kabaret.flow.values), 37
ConnectAction (class in kabaret.flow), 39
Connection (class in kabaret.flow), 35
current_page_num() (kabaret.flow.DynamicMap
method), 42
current_page_num ()

41

(kabaret.flow.Map method),

D

decr () (kabaret.flow.values.IntValue method), 36

DEFAULT_EDITOR (kabaret.flow.values.BoolValue at-
tribute), 36

DEFAULT_EDITOR
attribute), 38

DEFAULT_EDITOR (kabaret.flow.values.DictValue at-
tribute), 36

DEFAULT_EDITOR (kabaret.flow.values.FloatValue at-
tribute), 36

DEFAULT_EDITOR (kabaret.flow.values.HashValue at-
tribute), 37

DEFAULT_EDITOR
attribute), 36

(kabaret.flow.values.ChoiceValue

(kabaret.flow.values.IntValue

DEFAULT_EDITOR (kabaret.flow.values.MultiChoiceValue

attribute), 38

DEFAULT_EDITOR (kabaret.flow.values.OrderedStringSetValue

attribute), 37

DEFAULT_EDITOR (kabaret.flow.values.Ref attribute),
38

DEFAULT_EDITOR (kabaret.flow.values.StringValue at-
tribute), 36

DEFAULT_EDITOR
tribute), 35

(kabaret.flow.values.Value at-

53

Kabaret Documentation, Release 2.0

del_key ()
37
DictParam (class in kabaret.flow), 35
DictValue (class in kabaret.flow.values), 36
DynamicMap (class in kabaret.flow), 41

F

FloatParam (class in kabaret.flow), 35
FloatValue (class in kabaret.flow.values), 36

G

(kabaret.flow.values.HashValue method),

get () (in module kabaret.app.resources), 44

get () (kabaret.flow.values.ComputedValue method), 37
get () (kabaret.flow.values.HashValue method), 37

get () (kabaret.flow.values.OrderedStringSetValue

method), 37
get () (kabaret.flow.values.Ref method), 38
get () (kabaret.flow.values.SessionValue method), 36
get () (kabaret.flow.values.Value method), 36
get_buttons () (kabaret.flow.Action method), 39
get_buttons () (kabaret.flow.ChoiceValueSelectAction
method), 40
get_default_height ()
(kabaret.flow. Thumbnaillnfo method), 33
get_first_last_fps()
(kabaret.flow. Thumbnaillnfo method), 34
get_folder_names () (in module
kabaret.app.resources), 44
get_icon () (in module kabaret.app.resources), 44

get_key () (kabaretflow.values.HashValue method),
37

get_label () (kabaret.flow.Thumbnaillnfo method),
34

get_mapped () (kabaret.flow.DynamicMap method),
42

get_mapped () (kabaret.flow.Map method), 41
get_path () (kabaret.flow.Thumbnaillnfo method), 34
get_pixmap () (in module kabaret.app.resources), 44

get_range () (kabaret.flow.values.OrderedStringSetValu
method), 37

get_resource () (kabaret.flow. Thumbnaillnfo
method), 34

get_result () (kabaret.flow.Action class method), 39
get_score () (kabaret.flow.values.OrderedStringSetValu
method), 37
get_source_display ()
method), 41
get_source_display () (kabaret.flow.Object class
method), 33
get_source_oid()
method), 38
get_ui () (kabaret.flow.Parent method), 34

(kabaret.flow.Map class

(kabaret.flow.values.Ref

H

has () (kabaret.flow.values.OrderedStringSetValue
method), 37
has_key () (kabaret.flow.values.HashValue method),

37
HashParam (class in kabaret.flow), 35
HashValue (class in kabaret.flow.values), 37

TICON (kabaret.flow.values.Ref attribute), 38

ICON (kabaret.flow.values.Value attribute), 35

incr () (kabaret.flow.values.IntValue method), 36

IntParam (class in kabaret.flow), 35

IntValue (class in kabaret.flow.values), 36

is_image () (kabaret.flow.Thumbnaillnfo method), 34

is_resource () (kabaret.flow. Thumbnaillnfo
method), 34

is_sequence ()
method), 34

(kabaret.flow. Thumbnaillnfo

K

kabaret.app.resources (module), 43
kabaret . flow (module), 33
keys () (kabaret.flow.values.HashValue method), 37

L

Label () (in module kabaret.flow), 35
len () (kabaret.flow.values.HashValue method), 37

len() (kabaret.flow.values.OrderedStringSetValue
method), 37

list_folder () (in module kabaret.app.resources),
44

list_folder_paths () module

kabaret.app.resources), 44

(in

M

Map (class in kabaret.flow), 40

emapped_type () (kabaret.flow.DynamicMap
method), 42

mapped_type () (kabaret.flow.Map class method), 41

MissingChildError, 33

MissingRelationError, 33

eMultiChoiceValue (class in kabaret.flow.values), 38

class

needs_dialog () (kabaret.flow.Action method), 39

needs_dialog () (kabaret.flow.ChoiceValueSetAction
method), 40

NotFoundError, 43

notify () (kabaret.flow.values.Value method), 36

O

Object (class in kabaret.flow), 33

54

Index

Kabaret Documentation, Release 2.0

OrderedStringSetParam (class in kabaret.flow),
35

OrderedStringSetValue
kabaret.flow.values), 37

(class in

P

page_size () (kabaret.flow.DynamicMap method), 42
page_size () (kabaret.flow.Map method), 41

Param (class in kabaret.flow), 35

Parent (class in kabaret.flow), 34

R

Ref (class in kabaret.flow.values), 38
RefSourceError, 33
RefSourceTypeError, 33

remove () (kabaret.flow.Map method), 41

remove () (kabaret.flow.values.OrderedStringSetValue
method), 37

resolve_refs () (kabaret.flow.values.Ref static
method), 38

ResourcesError, 43

revert_to_default ()
(kabaret.flow.values.OrderedStringSetValue
method), 37

revert_to_default ()
method), 36

row () (kabaret.flow.DynamicMap method), 42

row () (kabaret.flow.Map method), 41

rows () (kabaret.flow.DynamicMap method), 42

rows () (kabaret.flow.Map method), 41

run () (kabaret.flow.Action method), 39

run () (kabaret.flow.ChoiceValueSelectAction method),
40

run () (kabaret.flow.ChoiceValueSetAction method), 40

S

Separator () (in module kabaret.flow), 35
SessionObject (class in kabaret.flow), 33
SessionParam (class in kabaret.flow), 35
SessionValue (class in kabaret.flow.values), 36
set () (kabaret.flow.values.BoolValue method), 36

(kabaret.flow.values.Value

set () (kabaret.flow.values.ChoiceValue method), 38

set () (kabaret.flow.values. ComputedValue method), 37

set () (kabaret.flow.values.DictValue method), 36

set () (kabaret.flow.values.FloatValue method), 36

set () (kabaret.flow.values.HashValue method), 37

set () (kabaret.flow.values.IntValue method), 36

set () (kabaret.flow.values.MultiChoiceValue method),
38

set () (kabaret.flow.values.OrderedStringSetValue
method), 37

set () (kabaret.flow.values.Ref method), 38
set () (kabaret.flow.values.SessionValue method), 36
set () (kabaret.flow.values.StringValue method), 36

set () (kabaret.flow.values.Value method), 36

set_cached () (kabaret.flow.values.ComputedValue
method), 37

set_default_value()
(kabaret.flow.values.OrderedStringSetValue
method), 37

set_default_value()

(kabaret.flow.values.SessionValue method),
36

set_default_value () (kabaret.flow.values.Value
method), 36

set_key () (kabaret.flow.values.HashValue method),
37

set_score () (kabaret.flow.values.OrderedStringSetValue

method), 37
set_store_value ()
(kabaret.flow.values. ComputedValue method),

37

set_watched () (kabaretflow.values.Value method),
36

source_touched () (kabaret.flow.values.Ref
method), 38

SOURCE_TYPE (kabaret.flow.values.Ref attribute), 38
source_value_changed () (kabaret.flow.values.Ref
method), 38
STRICT_CHOICES
attribute), 38
StringParam (class in kabaret.flow), 35
StringValue (class in kabaret.flow.values), 36

T

ThumbnailInfo (class in kabaret.flow), 33

touch () (kabaret.flow.Map method), 41

touch () (kabaret.flow.Object method), 33

touch () (kabaret.flow.values. ComputedValue method),
38

(kabaret.flow.values.ChoiceValue

U

ui () (kabaret.flow.object._Relation method), 34
update () (kabaret.flow.values.HashValue method), 37

Vv

validate () (kabaret.flow.values.BoolValue method),
36

validate ()
37

validate () (kabaret.flow.values.FloatValue method),
36

validate () (kabaret.flow.values.HashValue method),
37

validate () (kabaret.flow.values.IntValue method), 36

validate () (kabaret.flow.values.StringValue method),
36

Value (class in kabaret.flow.values), 35

(kabaret.flow.values.DictValue method),

Index

55

Kabaret Documentation, Release 2.0

W

watched () (kabaret.flow.Connection method), 35
watched () (kabaret.flow.Param method), 35

56 Index

	Main Features
	Status
	Why and How
	Quick Start
	Usage
	Guru
	Installation
	Flow Reference Guide
	App Reference Guide
	Featured Extensions
	FAQ & Fun Facts
	Credits

	Indices
	Python Module Index
	Index

